Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms.

نویسندگان

  • Derek Gordon
  • Stephen J Finch
  • Michael Nothnagel
  • Jürg Ott
چکیده

The purpose of this work is to quantify the effects that errors in genotyping have on power and the sample size necessary to maintain constant asymptotic Type I and Type II error rates (SSN) for case-control genetic association studies between a disease phenotype and a di-allelic marker locus, for example a single nucleotide polymorphism (SNP) locus. We consider the effects of three published models of genotyping errors on the chi-square test for independence in the 2 x 3 table. After specifying genotype frequencies for the marker locus conditional on disease status and error model in both a genetic model-based and a genetic model-free framework, we compute the asymptotic power to detect association through specification of the test's non-centrality parameter. This parameter determines the functional dependence of SSN on the genotyping error rates. Additionally, we study the dependence of SSN on linkage disequilibrium (LD), marker allele frequencies, and genotyping error rates for a dominant disease model. Increased genotyping error rate requires a larger SSN. Every 1% increase in sum of genotyping error rates requires that both case and control SSN be increased by 2-8%, with the extent of increase dependent upon the error model. For the dominant disease model, SSN is a nonlinear function of LD and genotyping error rate, with greater SSN for lower LD and higher genotyping error rate. The combination of lower LD and higher genotyping error rates requires a larger SSN than the sum of the SSN for the lower LD and for the higher genotyping error rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association study of two single nucleotide polymorphisms rs10757278 and rs1333049 with atherosclerosis, a case-control study from Iraq

Atherosclerosis is one of the most important coronary artery disease (CAD) caused by lipid accumulation, hypertension, smoking, and many other factors such as environmental and genetic factors. It has been recorded that genetic variations in rs10757278 and rs1333049 are correlated with CAD. In the present study, 100 blood samples were collected (50 CAD patients and 50 appeared to be healthy con...

متن کامل

Errors and Linkage Disequilibrium Interact Multiplicatively When Computing Sample Sizes for Genetic Case-Control Association Studies

Single nucleotide polymorphisms (SNP) may be used in case-control designs to test for association between a SNP marker and a disease. Such designs may assume that the genotype data are reported without error. Our goal is quantifying the effects that errors have on sample size for case-control studies with haplotypes formed by a disease locus and a SNP marker locus in the presence of linkage dis...

متن کامل

Omentin-1 rs2274907 and resistin rs1862513 polymorphisms influence genetic susceptibility to nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is an obesity-associated disease and dysregulation of adipokines has an important role in its development. Omentin-1 (ITLN1 protein) and resistin are two adipokine secreted from adipose tissue. Single nucleotide polymorphisms in the adipokine genes may affect expression and activity of the adipokine, and thus play a contributory role in NAFLD pathogenesi...

متن کامل

Single Nucleotide Polymorphisms and Association Studies: A Few Critical Points

Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...

متن کامل

Single Nucleotide Polymorphisms (SNPs) of GDF9 Gene in Bahmaei and Lak Ghashghaei Sheep Breeds and Its Association with Litter Size

Growth differentiation factor 9 (GDF9) belong to the superfamily of transforming growth factor β that is highly expressed in growing ovarian follicles of oocyte, and it has been strongly related to fecundity traits in sheep. Therefore, the GDF9 gene could serve as a genetic marker for improvement of reproductive performance in sheep. Therefore, the aim of this study was to invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human heredity

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2002